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Thermally induced flow instabilities in uniformly heated boiling channels have been 
studied analytically. The classical homogeneous equilibrium model was used. This 
distributed model was transformed into an integrodifferential equation for inlet 
velocity. A linear analysis showed interesting features (i.e. islands of instability) of 
the marginal stability boundary which appear when the effects of gravity and friction 
were systematically considered. A quasilinear Hopf-bifurcation analysis, valid near 
the marginal-stability boundaries, gives the amplitude and frequency of limit-cycle 
oscillations that can appear on the unstable side of the boundary. The analysis also 
shows cases where a finite-amplitude perturbation can cause a divergent instability 
on the stable side of the linear-stability boundary. 

1. Introduction 
The hydrodynamic stability of a heated boiling channel is of great practical 

importance in the design and operation of process equipment in the chemical and 
power industry. An instability may cause a divergent evolution (oscillating or not), 
leading to mechanical damage or a violation of thermal limits. Of the various types 
of flow instability to which two-phase systems are prone, the most common is a 
relatively low-frequency instability called a density-wave oscillation. Consequently, 
starting with the work of Serov (1953), this instability type has been studied 
extensively. 

Most previous analytical work (Bour6 1965; Ishii 1971 ; Yadigaroglu 1978) has been 
confined to a linear stability analysis of the threshold of instability. Ishii (1971), 
Yadigaroglu (1978) and Achard, Drew & Lahey (1981) have dealt with the effects 
of various modelling assumptions on this instability threshold. Krishnan, Atkinson 
& Friedly (1980) have attempted a nonlinear stability analysis. Such analyses give 
information about what happens once the linear-stability threshold has been crossed. 
These authors treated a model that neglected fluid inertia, and was dominated by 
outlet friction. Recently, Atkinson & Friedly (1982) have shown that this model does 
not predict limit-cycle oscillations, even though they are observed in experimental 
situations where the model approximations should be valid (Akinjiola & Friedly 
1982). They concluded that the model should be modified to include heated-wall 
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dynamics. In contrast with Friedly’s model, we have included fluid inertia. As a 
consequence our model is able to predict limit-cycle response in a boiling channel 
without considering local losses and heated-wall dynamics. 

A comprehensive linear stability study has been given by Achard et al. (1981). By 
performing a systematic study of the linear-stability boundary, ‘islands of instability ’ 
were found in the nominally stable operating region. In  addition, it was shown that 
the linearized stability model predicts excursive (i.e. Ledinegg) instability for the 
zero-frequency limit. 

Our study of nonlinear effects is based on the results obtained from linear analysis, 
and is concerned with whether nonlinear solutions can bifurcate; that is, whether 
there exist two (or more) solutions corresponding to a given set of external boundary 
conditions. In particular, we have studied the possibility that a periodic solution may 
exist near a steady-state solution, and whether such periodic solutions are stable. This 
bifurcation, or branching, of a periodic solution from a steady-state solution is often 
called a Hopf bifurcation (Hopf 1942). Linear theory gives the threshold to the onset 
of instability for infinitesimal disturbances. The nonlinear analysis gives a sufficient 
condition for stability for finite disturbances, in that it predicts a threshold amplitude 
above which finite-amplitude oscillations may grow. Moreover, it predicts conditions 
under which finite-amplitude oscillations may appear. 

The model used in this study was chosen to give a compromise between realism 
and calculational practicality. The heated channel under consideration wtw assumed 
to be operating subject to constant-pressure-drop (i.e. parallel-channel) boundary 
conditions. A homogeneous equilibrium model was used, the heat flux was assumed 
to be constant and uniform, and the inlet subcooling was held constant. 

These conditions are appropriate for describing the operation of a system consisting 
of many identical heated boiling channels connecting two large plena. In this 
configuration, the applied pressure drop across any channel is approximately 
constant, and the mixing that occurs in the lower plenum keeps the inlet temperature 
approximately constant. 

It will be shown in this study that linear stability evaluations of a boiling channel 
may be nonconservative with respect to finite-amplitude disturbance-induced 
instabilities in the subcritical case, and conservative with respect to limit-cycle 
oscillations in the supercritical case. 

2. Lumped parameter modelling 
The mathematical representation of a heated boiling channel operating at steady 

state, the stability of which we are studying, is shown in figure 1. Four operating 
parameters, or boundary conditions, characterize the system : 

(i) the heat flux tji, assumed here to be uniform for the sake of simplicity; 
(ii) the pressure level p;  
(iii) the impressed pressure drop Apex across the heated channel. 
(iv) the inlet temperature Ti or equivalently the inlet subcooling Ahs,,,,. 
The boiling channel can be divided into two regions: the single-phase and the 

two-phase region. For each region, the state variables describing the system are the 
velocity, pressure and enthalpy. 

It was convenient to non-dimensionalize the model using the heated length L,, 
the time v for the liquid to lose its inlet subcooling, and the inlet velocity v,, 
corresponding to the first appearance of bulk boiling at the exit. 
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FIGURE 1. Schematic of a typical boiling channel. 

The resulting dimensionless forms are 

(Euler number), 

(Froude number), 

(friction number), 

" (subcooling number), 
Nsub = 'vrhfg 

j = jo/v0 (velocity number), 

where vo is the inlet velocity when the boiling boundary is at the outlet of the channel, 

and Apo is a pressure-drop scale, which will be defined later, 6 is the heat flux, pk: 
is the density of phase k, L, and D ,  are the heated length and hydraulic diameter 
of the channel respectively,fis the friction factor, vf = l / p f ,  vfg = l / p g -  i/pf, hi is the 
inlet enthalpy, hf is the saturation enthalpy of the liquid, h, is the saturation enthalpy 
of the vapour and hfg = h,-h,. Also, A,, is the cross-sectional area of the channel 
and PH is the heated perimeter. 

We now let h(t) = h*(t)/LH be the dimensionless distance from the inlet to the 
boiling boundary (Lahey & Moody 1977). If we spatially integrate the energy 
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equation along the single-phase region 0 < z < A ( t ) ,  the dimensionless system 
becomes 

0') = j, (6) 
a~ d j  - Eu - = -+ Aj2+Fr-l ,  
az dt (7) 

where the angular brackets ( 
channel. 

) represent an average over the cross-section of the 

Similarly, for the two-phase region, h(t)  < z < 1, we have 

where pH is the (homogeneous) density, (j) is the two-phase volumetric flux, j is the 
inlet velocity, p is system pressure and (X) denotes the flow quality. 

A lumped-parameter system of equations can be derived from this distributed 
system by integrating (9) and (1 1) along their characteristics, using the results in the 
mixture momentum equations (lo), and integrating (7) and (10) along the heated 
length, We thus obtain the pressure drop in the single-phase portion of the channel 
(Achard et al. 1981) as 

1 d j  z-A(t) 

Ap,g = jz-o ( - g) dz = [z + Aja + Fr-l . 

Similarly, for the two-phase portion we have 

A further simplification is achieved if we change the variable of integration from space 
to time difference (t' = t - t o ) ,  and combine (9) with (13) to obtain 
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where Apex is the imposed dimensionless pressure drop (0 < Apex < 1) and 

Gb(t) = j ( t -  I ) ,  
t 

A ( t )  = l t - l j ( t ’ )  dt” = Jolj ( t - t”)  dt”. 

The lumped system, given by (15)-( 16e), is an integrodifferential equation which 
governs the behaviour of the inlet velocityj(t). The solutionj(t) of this system depends 
on the history ofj(t-t’) for delays t’ satisfying 0 < t’ < 1 +7(t) .  

The relationship between the steady-state pressure drop Apex and the steady-state 
inlet-velocity ratio J is given by (15) as 

Ape. = {NsubJ( 1 -J) + FT-’J( 1 + 7”) A p z  +iJNsub( 1 -J)’]}/EU. (17) 
This relation gives two results. First, it gives the pressure-drop scale Apo used in 

the Euler number (1). This is obtained by putting Apex = 1 and J = 1. The Euler 
number is then a function of A, Nsub and Fr, and is thus not an independent 
dimensionless number. Secondly, it gives the dimensionless pressure drop Apex given 
values of Nsub, Fr, A andj .  So a steady state can be specified either by the vector 
of parameters (Nsub, Fr, A,  Apex)T, or equivalently by (Nsub, Fr, A,f)T. The second 
vector is preferred, because when Apex is given by (17) we cannot always determine 
j uniquely. We denote the vector of interest by 

For the linear and quasilinear stability analyses we must expand (15) and (16) about 
the steady state. To this end we writej = j + S j .  In Hopf-bifurcation analysis (Hopf 
1942; Howard & Koeppel 1976), it is necessary to retain terms through third-order 
(&is) perturbations. Let us summarize the perturbation procedure used in this study. 
First a linear stability analysis was performed to determine the value8 of the various 
parameters at  the critical point (i.e. the point where the solution changes from stable 
to unstable). To use Hopf bifurcation, the eigenvalue of the linear problem must have 
a non-zero imaginary part so that the solution is oscillatory instead of excursive. Thus, 
at the critical point, the linearized equations have a periodic solution. 

A perturbation expansion is assumed for the periodic solution, where the small 
parameter is a suitably defined amplitude. In order to determine where in parameter 
space this periodic solution occurs, one parameter, chosen as the critical parameter, 
has its amplitude expanded in a power series. The frequency is also expanded in the 
same way. The relation between the critical parameter and the amplitude is 
determined by the requirement that resonances not occur at  any order. To third order, 
this gives the relation between the first term in the expansion of the critical parameter 
and the disturbance amplitude. Expansions up to and including the cubic part of (15) 
and (16) have been performed (Achard, Drew & Lahey 1980). 



218 

90 

80 

6.0 
L 

- 

/ 
/ 

- 
7 / 

- I /  

3. Linear stability analysis 

the following characteristic equation (Achard et al. 1 9 8 1 )  : 
The linear part of the perturbation expansion was Laplace-transformed to yield 

@(s) = a,+a,s+a,tP+ e-8 [b, + b, s + b, s2 + b, s3 + b, s4] 
(2Nsub-s) (Nsub-8)2 

e-('+i) 8 + [c,+c,s+c,s2+c3s3] = 0. (19)  
(2Nsub-s) (Nsub-s)2 

The roots of (19 )  determine the stability of the system. Figure 2 is a typical 
linear-stability map. Regions having k roots with Re (s) > 0 are denoted by D,. Hence 
the region of linear stability is denoted by Do. 
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Figure 2 shows several ‘islands of instability ’ in the nominally stable region of the 
map. These ‘islands’ appear when gravity effects are important (Fr 4 l ) ,  when 
friction effects are not too high (A < l),  and when the length of the two-phase region 
is significant. These ‘islands’ were suggested by Yadigaroglu & Bergles (1972) in an 
experimental study of density-wave oscillations. 

It is interesting to note-in figure 2 that the Ledinegg, or excursive, stability 
boundary appears at relatively high values of A. 

Figure 2 shows four possibilities for a heated channel to go from stable to unstable 
operation. First, if we allow the parameters to vary so that we go from region Do 
to D,, this indicates the onset of an excursive instability. In  so doing, only one root 
crosses the imaginary axis, and it is real. If we allow the parameters to vary so that 
we go from Do to D,, then two complex-conjugate roots cross the imaginary axis. 
This implies that the instability diverges harmonically. There are two pathological 
cases also shown, namely, going from Do to D, or D, respectively. These cases are 
unlikely to be encountered in practice, since, even if the intersection points were 
known exactly, it  would be difficult to vary the parameters sufficiently accurately 
to cross from D, into either D, or D, without going through one of the other regions 
(D, or D,) first. 

4. Nonlinear analysis 
Hopf-bifurcation theory (Hopf 1942) describes the evolution of perturbations that 

are small, but finite, for flow conditions that are near the marginal-stability boundary. 
This theory shows the existence of families of periodic solutions for the perturbations 
in anarrow strip either on the stable side, or the unstable side, of the marginal-stability 
boundary. The case when the periodic solution lies on the stable side of the stability 
boundary is called a subcritical bifurcation, and the case when the periodic solution 
lies on the unstable side is called a supercritical bifurcation. When operating in the 
stable region, the theory shows that, for a subcritical case, sufficiently large 
perturbations will diverge from the steady state; while, in the supercritical case, all 
small but finite-amplitude perturbations decay to zero in the stable region. For 
operation in the unstable region in the subcritical case, all perturbations diverge from 
the equilibrium. In contrast, in the supercritical case, the periodic solution is stable 
in the region of linear instability, and thus all perturbations eventually evolve to a 
limit cycle. 

In spite of the inherent limitations of linear analysis, it is often compared with 
experimental stability thresholds measured in the presence of a fairly high level of 
noise. Any discrepancies between theoretical predictions and experimental results are 
usually attributed to simplifications in the analytical model used. While that 
possibility is always likely, other possibilities exist; indeed, in the cam of a subcritical 
bifurcation, the linear-stability boundary may be quite far from the actual stability 
boundary for noisy flows. 

One of the purposes of this study was to obtain a more realistic stability threshold. 
It is significant to note that a quasilinear analysis is more stringent than the linear 
theory in the subcritical case. Another purpose of this study was to predict the 
amplitude of any resultant density-wave oscillations. The predicted amplitude can 
be compared with existing data. Finite-amplitude density waves can occur on the 
unstable side of the linear-stability boundav. These bounded oscillations (i.e. limit 
cycles) may be acceptable as normal operating points. In this regard, it is significant 
to note that, in the supercritical case, quasilinear analysis may be less stringent than 
linear analysis. 

8 FLH 1% 
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equation. For this discussion, we shall represent it in the general form, 
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The model that we have derived in (15)-( 16e) is a complicated integrodifferential 

F(C, 6X(t),  6Z(t), 6X(t-t’))  = 0, (22) 

represents the vector of parameters given in (18), specifying a steady-state 

The solution vector 6X(t) represents the perturbation of the two-phase flow 

(23) 
The trivial solution 6X= 0 is obviously an equilibrium solution of (22). The 

analysis of the linear stability of this equilibrium solution was discussed in $2. In this 
section we will consider nonlinear effects. What we wish to do is to determine for each 
point f in parameter space the corresponding amplitude 6 of the periodic solution. 
The points C should be ‘close’ to the linear-stability boundary, denoted by C = lo. 
Thus E = ~(0, where, by definition, ~(4, )  = 0. 

By specifying a value for E ,  say el, we can find a curve in the (Nsub, A)-plane where 
the periodic solution has amplitude tzl. This curve then gives the parameter values 
corresponding to a limit-cycle solution of amplitude el, in the supercritical case, or 
to the threshold amplitude above which periodic solutions diverge in the subcritical 
case. 

The starting point for a quasilinear analysis is the linear stability problem, which 
was summarized previously. Let us consider first a supercritical bifurcation. To get 
a limit cycle, it  is necessary that a conjugate pair or roots, 8 = a and .s = d, crosses 
the imaginary axis. 

Note that a = a(NSub, A) and, for the case of interest here, a(N,,bo, A,) is purely 
imaginary ; hence 

where 
flow. 

parameters : 
&x= (6’jt, 6A,  87, SI,, 6Jl, 6K,)T. 

z(Nsubo, = -a(Nsubo, * O .  (24) 

@O = Im [a(Ns,bo, > 0. (25) 

Thus the angular frequency w, is defined by 

It is convenient here to use Ci = A as the critical parameter, since A appears linearly 
in (15)-(16e). Thus we choose 

p = A-A, .  (26) 

When we expand the equation in the small parameter p we can save considerable 
work if this choice is made. Also, A appears to be appropriate, since at most points 
on the linear-stability surface an increment in A causes the point to move off the 
surface. If this did not happen, the expansions to be used would be inappropriate, 
which would be indicated by the inability to calculate the coefficients in the 
expansions of the critical parameter and frequency. This problem can be understood 
in terms of the linear-stability boundary plots. Specifically, if there is a point on the 
curve Re (8) = 0 with Re (aa/ap) = 0, the expansion procedure fails at that point. A t  
such a point, another choice of the critical parameter is needed. 

In- Appendix A two mathematical results that will be useful in later analyses are 
given. The first one is original and shows what can be done if one encounters an 
inappropriate choice of the critical parameter. The second one is the well-known 
theorem due to Hopf (1942), which forms the basis of all our calculations. It is 
basically an existence theorem and justifies the search for a periodic solution for 6X(t). 
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Stability of Existence of Stability of 
the equilibrium a periodic the periodia 

solution solution stability 

Supercritical 

R e r F ] > O  p(,)>O p > O  Unstable Yes Stable 
- P < O  Stable No 

Subcritical 
Unstable No - 

p(8) p” 
P < O  Stable Yes Unstable 

Subcritical 

Stable Yes Unstable 
Unstable No - 

Re[-]<O a401 p(,)>O p>O 

aP B < O  
Supercritioal 

- P(Z) < o  P > 0 Stable No 
P < O  Unstable Ye8 Stable 

TABLE 1. Implications of the sign of p(z) 

Some of the consequences of this theorem will be shown for our particular system. 
For example, it follows direotly from the theorem that the expansions of p and T 
are of the form 

p = p(1) “+/l(Z) a 2 + .  ’., (27) 

T = M( l / ~ o +  &I) E +  e2 + . 1, (28) 

where, necessarily, ,u(~) = E(u F 0. The theoretical reason is  that the solution must 
be the same for E > 0 and B < 0. Thus only even powers may appear in (27) and (28). 
We shall show this shortly, along with the result that p(2) 8 0 and &2) + 0. 
G very important by-product of the theorem will also be used, The result concerns 

the stability of the periodic solution p(t ,  E). The periodic solution will be stable (i.e. 
it  will be a limit cycle) if the corresponding steady solution is unstable. Also, if the 
ste&dy-state solution is linearly stable, the periodic solution will be unstable. The 
results are summarized in table 1, 

To proceed with the calculation, let us wmme that the operator represented by 
(15) and (10) can be written in the form 

Writing 

F(A,6j) = 0. 

Sj = cj 
and expanding for small Sj gives 

0 = L(A, j) + sQ(i, j) + e2C(i, j, j) + 0(e9), 

0 = L(Ao,j) + ( A  -Ao)  - (A,,, j) + sQ(i, j) + B “(i, j, j) + O ( 8 )  + O ( A  
aL 
aA 

where L is the linearized version of (15) and (16), and Q and C are the quadratic and 
cubic terms respectively. They are written as bilinear and trilinear forms; i.e. 

8-2 
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QU+h, j )  = QU, j )+Q(h , j ) .  Note that L, aL/aA, Q and C are operators involving 
differentiation, delay and integration of j. 

Let us now describe the procedure to obtain the periodic solution. In  order to do 
this, it  is convenient to 'normalize' the solution so that the period is exactly 211. Thus 
we introduce a variable 8, defined by 

t = B( i/wo + g). (32) 

If we now expand j, A and 5 in powers of E, we have 

j = j ( 0 )  +Ej(l) +Eej(2) + . . . > (33) 

A = A ~ + E P ( ~ ) + E ~ P ( ~ ) + . . . ,  (34) 

E; = E:5(1)+€2E;(2)+.... 

To lowest order in E, (31) gives 

L(AO,j(O)) = 0. 

(35) 

(36) 

Equation (36) is precisely the equation governing the linear stability of the steady 
state, with a change of time variable from t to 8. Thus we see that efie are solutions. 
The real-valued solution we wish to consider is 

j(o) = !j(eie+e-ie). 

This particular solution satisfies the ' initial ' conditions 

and 

(37) 

(39) 

If we also require that for the higher-order solutions 

(40) 
0 

j(,,(8)sinOdO=O ( k =  1,2, ...) 
11 -2n 

then the solution satisfies 

0 

A 6j(B) sin8 d8 = 0. (42) 
11 -2n 

Note that (41) and (42) define the relation between the imposed history, Sj(8), for 
8 < 0, and the parameter E ,  which is a measure of the amplitude of the disturbance. 

The equation for &)(d) is obtained by collecting all the 0(s2) terms, and then 
eliminating all the dependent variables except j(l). This leads to 

where 
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and (45) 

The constants ak and bto) and the forcing function Q are given in Appendix B. 
The Fredholm alternative for (43) yields 

(46) 

(47) 

aL0 

aL0 

-p(1) Re {q} +[(I) Re iLT) = O ,  

-p(1) Im {q} + 6(1) Re {LT} = O ,  

which is a homogeneous linear system for the unknowns p(l) and &). The solution 
is trivial, p(l) = 

The constant and efeie terms are needed in the calculation of [(2) and ,u(~). They 
are given in Appendix C. 

The values of &2). and pts, the first two non-zero terms in the expansions of T(B) 
and p(e), are obtamed by imposing the Fredholm alternative condition on the 
equations of order 8. This equation is obtained by collecting all the O(e3) terms, and 
then eliminating all the dependent variables, exceptj(,). This equation can be written 
as 

'O(j(2))  = -&a) - ( j (0) )  + 6(2) LT(j(o)) + s Q ( j ( o ) y  &I)) + sc(j(o))* 

= 0, unless the determinant is zero. 

(48) 
aL0 
aP 

Our purpose at this order is to calculate and p(2) using the Fredholm alternative. 
The first two terms on the right involve eie alone. The others involve a constant, ei2', 
e-i88, eiBe, and e-i3e as well as eie and e-ie. For simplicity, we write 

s = ~ & ~ ( O ) ~ ~ ( l ) ~ + ~ C ~ ( O ) ~ ~  (49) 

The condition for the existence of a periodic solution of (48) then becomes 

(50) 

(51) 

aL0 
-p(2) =-%{s), 

-p(2) Im r$} + [(a) Im lLT) = -Im {s). 

Solving gives 

5. Implications of the nonlinear analysis 
The parameter p(2) was calculated numerically for each point on the marginal- 

stability boundary in the (A, NSub)-plane (Achard et al. 1980). Figures 3 and 4 show 
the results for Fr-l = 50,J = 0.325 and Fr-l= 50.0, J = 0.50 respectively. Note that 
there are four amplitudes E shown in each figure. The solid curve is the marginal- 
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Neub 

F'ICXJRE 3. Finite-amplitude instability surfacesj = 0.325, Fr-l = 50.0: 
- , ~ = 0 ,  . * . a  1 ,  0.1.----,0.3;---,0.5. 

N S U b  

-, B = 0; ---, 0.3; ---, 0.5. 
RQURE 4. Finite-amplitude instability surface$ = 0.50, Fr-I = 50.0: 
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stability boundary, while the broken curves indicate the positions in parameter space 
where various amplitudes of the periodic solution are obtained. When the broken 
curves lie on the stable side of the marginal-stability curve (the subcritical case), they 
indicate the location where a disturbance with an amplitude less than the value of 
e on that curve will decay to zero. In  contrast, if a disturbance is present with an 
amplitude greater than e, that disturbance will grow. When the broken curves lie on 
the unstable side of the marginal-stability curve (the supercritical case), they indicate 
the amplitude of the stable limit cycle, to which all disturbances evolve. Regions of 
both subcritical and supercritical bifurcation can be noted in both figures; however, 
the most important features in figure 3 are associated with subcritical bifurcations. 

These curves can be interpreted in terms of allowable noise in the system. Suppose 
that the system is designed to tolerate noise of amplitude eo (e.g. eo = kO.1). Then 
the finite-amplitude stability boundary is the curve corresponding to e = eo. If the 
e = eo curve is on the stable side of the marginal-stability-boundary (subcritical) case, 
then the allowed noise in the system can trigger an instability if the finite-amplitude 
stability boundary is closer to the marginal-stability boundary than the e = eo curve. 
If the curve is on the unstable side (supercritical), operating between the marginal- 
stability boundary and the e = eo curve gives oscillations of amplitude less than e,,, 
which are tolerable to the system. Taking these two arguments together, we see that 
the finite-amplitude stability boundary for an allowable noise level of eo is the e = e0 
curve in parameter space. 

One important qualitative implication of this work is in relation to  the validity 
of linear stability analysis. If thee = constant curves lie close to the marginal-stability 
boundary, then the marginal-stability boundary is generally valid in the sense that 
it will closely predict where a finite-amplitude instability is observed. To see this, first 
consider the subcritical case. If, for instance, the e = 0.3 curve lies close to the 
marginal-stability boundary, then a disturbance of amplitude k 30 % will decay unless 
the parameter values are closer to the marginal-stability boundary than the e = 0.3 
curve. Thus it would take a large disturbance to trigger an instability unless the 
parameter values were very close to the marginal-stability boundary. 

For the supercritical case, the e = constant curves correspond to the limit-cycle 
amplitude reached by the disturbance. If these curves lie close to the marginal-stability 
boundary, then, when parameter values are picked somewhat away from the 
marginal-stability boundary on the unstable side, a rather large-amplitude oscillation 
will result. In  many cases, large-amplitude oscillations are as undesirable as oscillations 
that continue to grow, or excursions. Figure 4 indicates a situation in which the 
e = constant curves lie close to the marginal-stability boundary. When this happens, 
the marginal-stability boundary gives a true representation of the operation stability 
boundary. On the other hand, figure 3 is an example in which the marginal-stability 
boundary may be invalid. 

6. Conclusions 
The main conclusion of the present analysis is that knowledge of the linear-stability 

boundary may be inadequate to assess the operating stability of process equipment 
involving boiling channels. Subcritical regions may exist on the stable side of the 
marginal-stability boundary. Thus caution should be exercised in designing boiling 
systems in order to avoid damaging instabilities excited by the presence of noise 
inherent in such systems. 

It should be clear that the present analysis suggests that many new experimental 
studies are needed to test these analytical results, including unusual features (i.e. 
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‘islands of instability ’) of the marginal-stability boundary, the frequency and 
amplitudes of limit-cycle oscillations in the supercritical cases, and the divergent 
instability characteristics of some subcritical regions in parameter space. Indeed, it 
is hoped that this study will stimulate needed experimental studies on finite-amplitude 
stability boundaries. 

Appendix A 
Here we show that if one encounters an inappropriate choice of critical parameter, 

while some other parameter is appropriate, then there are a large number of choices 
of appropriate critical parameters. If p = cl-cl is inappropriate to use a t  T o ,  but 
v = c,-& is appropriate, then the variable p*, &fined by 

(A 1) 
0 

p = p* cos 8, v = p* sin 0,  

will be appropriate for any 8 9 nn. Keeping 8 constant, we have 

which has a non-zero real part a t  go, since aalav has non-zero part, and sin8 9 0. 
Thus any linear combination of critical parameters is also a critical parameter, and 
furthermore, if one is appropriate, then among the combination there will be many 
appropriate choices of the critical parameter. 

Let us consider a point p(0) on the marginal-stability curve where p is inappro- 
priate to be selected as the critical parameter ; p is then arbitrary and v undefined. In 
this case we must select a different critical parameter for the analysis near that point. 
Choosing simply another critical parameter corresponding to another ‘good ’ control 
parameter c5 may be very lengthy because the whole computational procedure would 
have to be changed. So it is interesting to use the following approach, which operates 
on results obtained with the ‘bad’ control parameter Q1) obtained around (“(0). 
Specifically, we will try to build the hypersurface C ( E )  off y“(0) by stretching from two 
points ((l)(O) and Q2)(0) close to C“(0) on the marginal-stability curve known by pieces 
of ((e’). From ((l)(O),  ((6’) can be defined in terms of the ‘bad’ parameter as 

C(E’) = P ( 0 )  + (,q2, d2 + . . .) ep. (A 3) 

Here ep denotes the unit vector in the direction of increasing p. 
Let us define a new critical parameter p(e ,C)  by trying to reach the same point ( 

in the hyperspace of parameters for the same value E ’ ,  but from the other neighbouring 
point g2)(0) on the marginal-stability curve : 

((6’) = Q2)(0) + (li(2) d2 + . . .) eb. 

((4 = r[:] + E 2 P ( 2 )  e/i. 

(A 4) 

Using (C 3) and (C 4) (Appendix C), we can determine 
surface ((€) can then be approximated by taking 

e;. Points on the hyper- 

(A 5 )  

Finally, points near ({:I can be found by taking judicious choices for (ti{, ($1 and B’. 
The second mathematical result that we want to present is the Hopf theorem, which 

is discussed by Howard & Koeppel(l976) and Kazarinoff, Wan & Van Der Dreische 
(1978): 

There exists a eo < 0 such that, for each e in the interval -E,,  < E < c0, 
there exists a periodic solutionp(t, E )  of (22), with period T(s ) .  The parameter E is related 
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to p by a functional relation p = p(e), with p(0) = O,p(t, 0) = 0, and p(t, B )  + 0 for all 

These periodic solutions exist for exactly one of three cases. Either (i) only for p > 0 
or (ii) only for p c 0 or (iii) only for p = 0. Furthermore, there is no other 'nearby' 
periodic solution, in the sense that for any L > 0 there are positive numbers a and 
b such that for p < b there exists no periodic solution other than the steady-state 
solution SX = 0 and the periodic solutionp(t, e )  with period smaller than L, and whose 
amplitude is I &Y(t) 1 < a. 

8 = 0, and T(0) = 2n/o,. 

Appendix B 

(44) and (45) are given by 
The equation forj(,)(O) is given by (43)-(45). The constants Pk and bik,, needed in 

B1 = w0{Fr-l (1-ee-Nsubi)-Nsubj+Aoj2(1 -eNsubi)}, 

B2 = j ( 1  +7")wo, B3 = -Nsub&K 
B4 = - Fr-' (1 - e-N subi)+Nsubj-Aoj2(l -eNsubi), B 5 = -Fr-l, 

B6 = wo Fr-l, P7 = Fr-' e-Nsubi + qub jf+ A, j2 eNsub (1 + 2 Nsub 3, 

BB = -jAo, BS = ~ ~ F r - 1  e-Nsubi+AO@0j2 eNsubi, 

2Ao NsubJ2 

"0 
9 

Blo = k(FT-1  e -Nsub i+A, j2  eNsubi}, Bll = - A  ,w0j2 ,  B12 = - 
"0 
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The nonlinear forcing function is given by 

B' 
+ A ,  ~o'uoj(o~(8-fl--w) J0 j,,,(8-8"-wo)de"d6 

where the As are given by 

A, = A,, A ,  = - Nsub A,, A,  = -j( 1 +f) A,, 
2"O 

A,  = -2JA0, A,, = - Nsub, A,, = -2JA,, 

A,, = -w,, A,, = A,,, A,, = - 2 4 .  
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Appendix C 

of ((,) and p(,). If we write 
The constant and e*2ie terms in the first-order solution are needed in the calculation 

y(l) = a&, + bfl, eie + 6 epic + cYl) eize +% e-izB, (C 1) 

and further separate a&, as 

we have 

ql)  = i ( q 1 )  +"G,), 

+A8+A,b:,,-Alo6~;) e i " ~ + A l l ~ - A l , b ~ o ~ i - A  13 b'oi+A (0 )  14 F }  (0) (C 3) 

and 

where @ is given by 

1 -J eaNsub - 1 
@ ( O )  = a l + a , + a 3 w o + a * 7 w O + a ~ W ~ - + a  w ' 2Nsub 

*sub 
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and 

cub A, e-'Oo (e(2Nsub-iwo) '- 1) (3Nsub - iWo) - { (2Nsub-iwO) (%ub+Ot) 

i(&of- 1) 
l' + e(Nsub-2iwo) i - 1 2i (e-iwo i - + - 4NSUd1 - I )  - 

J (%ub+wi)  (Nsub-2iwO) (Nsub +iwO) ~O(Nsub+iWO) (Nsub-iWO)wO 

(C 17) 
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